MIDI-B De-identification

syn53065760

Created By Maria Diaz mdsage1

Tags:
Status: Active
Support: syn53065849
Abstract: Image de-identification is a requirement for the public sharing of medical images. The goal of the Medical Image De-Identification Benchmark (MIDI-B) challenge is to assess rule-based DICOM image de-identification (deID) algorithms using a large and diverse set of standardized clinical images with synthetic identifiers. Automated image de-identification methods that preserve the research utility of the data are desirable.
DataType: Images
Overview: syn53065760/wiki/625274
Timeline: syn53065760/wiki/627882
Objective: syn53065760/wiki/627881
Incentives: syn53065760/wiki/627880
Organizers: syn53065847
Description: syn53065760/wiki/627878
ConductRules: syn53065760/wiki/627883
Contributors: syn53065848
Instructions: syn53065760/wiki/627879
Announcements:
ChallengeType: Model to Data
Task_1.DataWiki: syn53065760/wiki/627887
Task_1.TaskType:
EligibilityRules: syn53065760/wiki/627885
Task_1.DataFolder: syn53065761
Task_1.Description: syn53065760/wiki/627877
Task_1.Leaderboard:
Task_1.EvaluationWiki: syn53065760/wiki/627888
Task_1.SubmissionType:
Task_1.SubmissionWiki: syn53065760/wiki/627890
Task_1.WinningSubmission:
syn53065848
syn53065847
syn53065840
syn53065849

MIDI-B De-identification page is loading…