Hi, I'm getting error in sub challenge 2 main lane, although the express lane works. This is with the breast cancer dataset, the ovarian seems to work. submission ID: 9654079 "No prediction file generated, please submit to the express lanes to debug your model!" Best, A.

Created by Ari Siitonen arppa99100
Dear Ari, This is your log file: ``` Loading RNA set: Done! Loading cNA set: Done! Loading Protein names for gold set proteins Done! Loading RNA gene order for the genes: Done! Transpose RNA dataset Dream_predictor_sub2_BREAST_final.py:90: FutureWarning: '.reindex_axis' is deprecated and will be removed in a future version. Use '.reindex' instead. reshape_df_new = reshape_df_new.reindex_axis(sorted(select_these_genes), axis=0) Transpose CNA dataset Dream_predictor_sub2_BREAST_final.py:89: FutureWarning: Passing list-likes to .loc or [] with any missing label will raise KeyError in the future, you can use .reindex() as an alternative. See the documentation here: http://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike reshape_df_new = reshape_df_all.loc[select_these_genes] Dream_predictor_sub2_BREAST_final.py:132: RuntimeWarning: divide by zero encountered in true_divide t_RNA_dataset2 = np.hstack((t_RNA_dataset3_2, t_RNA_dataset3_2 / cna_X_train_binned)) Dream_predictor_sub2_BREAST_final.py:132: RuntimeWarning: invalid value encountered in true_divide t_RNA_dataset2 = np.hstack((t_RNA_dataset3_2, t_RNA_dataset3_2 / cna_X_train_binned)) Done! Predicting Protein levels using ELASTIC NET model: Traceback (most recent call last): File "Dream_predictor_sub2_BREAST_final.py", line 144, in predicted_values = rf.predict(t_RNA_dataset2) File "/usr/local/lib/python3.5/dist-packages/sklearn/utils/metaestimators.py", line 115, in out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs) File "/usr/local/lib/python3.5/dist-packages/sklearn/model_selection/_search.py", line 467, in predict return self.best_estimator_.predict(X) File "/usr/local/lib/python3.5/dist-packages/sklearn/utils/metaestimators.py", line 115, in out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs) File "/usr/local/lib/python3.5/dist-packages/sklearn/pipeline.py", line 306, in predict Xt = transform.transform(Xt) File "/usr/local/lib/python3.5/dist-packages/sklearn/preprocessing/data.py", line 681, in transform estimator=self, dtype=FLOAT_DTYPES) File "/usr/local/lib/python3.5/dist-packages/sklearn/utils/validation.py", line 453, in check_array _assert_all_finite(array) File "/usr/local/lib/python3.5/dist-packages/sklearn/utils/validation.py", line 44, in _assert_all_finite " or a value too large for %r." % X.dtype) ValueError: Input contains NaN, infinity or a value too large for dtype('float64'). ``` Best, Tom

Model passed in SC2 express lane, but failed in main lane page is loading…